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Abstract-The self-motion response function and incoherent scattering 
function S,(k, W )  for simple classical liquids is studied using an exact repre- 
sentation presented in a previous paper. The latter can be termed a general- 
ized mean field representation to distinguish it from the generalized hydro- 
dynamic representation introduced elsewhere. It is shown that the present 
formalism offers a natural and convenient way of relating the experimentally 
determined S,(k, w )  to some basic quantities involving only the interaction. 
Using a small part of the recent experimental data on incoherent neutron 
scattering in liquid argon, we are able to calcula-te SJk,  w )  and other quantities 
of interest and to compare with the rest of the data. 

1. Introduction 

In a separate paper(') (hereafter referred to as I) we have introduced 
an exact representation for the density-density response function of 
simple liquids. This representation has been termed a generalized 
mean field representation since it is based on the usual expression for 
the response function except that the static, effective potential is 
replaced by one which is both wave number and frequency dependent. 
The formalism allowed us to analyze recent data on inelastic scatter- 
ing of neutrons from liquid argon@) and to calculate the van Hove 
coherent scattering function starting from some exact formulae. 

In  this paper we use the same method as in I to discuss a similar 
representation for the self-motion response function xs(k,  z )  and 
incoherent scattering function S,(k, w ) .  These functions describe the 
dynamic phenomena in the liquid associated with the motion of one 
selected (test) particle. Intuitively we expect that these functions 
will have a simpler structure than the corresponding functions 
discussed in I which describe the density fluctuations associated with 
the correlated motions of many particles. 
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206 A .  A .  KUGLER 

Let us emphasize at the outset that the method discussed here 
is quite different from the generalized hydrodynamic representation 
introduced originally by Kadanoff and Martin. @ s 4 )  Although both, 
representations are exact and describe the same response function, 
the emphasis and method of application differ somewhat. Hence 
these representations should be regarded as providing complementary 
frameworks for the description of the same physical phenomena. 

Single-particle motion in simple classical liquids has already 
been the subject of numerous theoretical investigations as well as 
some molecular dynamics  calculation^.(^*^) Here we do not intend 
to review or appraise the various methods of approach to the problem 
but refer to the recent works of Levesque, Verlet(6) and Desai(7) for 
extensive discussion, summary and references to previous work on 
this subject. 

The self-motion response function x s ( t ,  z)  from which the in- 
coherent scattering function S,(k,  w )  as well as the velocity auto- 
correlation function can be derived is defined as follows: if an 
externaI potential us(r, t )  is coupled only to the selected test particle 
at rs(t) through the corresponding density ps(r, t) = 6(r -rs(t)), then 
the change in ps from its value l / V  (where V is the volume of the 
system) is given in terms of its Fourier components by 

where N is the number of particles in the system and E is a positive 
infinitesimal. 

In  See. 2 we review the basic relations, analytic properties and 
sum rules connected with the response function xs(k, w +&) and its 
imaginary part, x:’(k, w )  ; the latter is related in a trivial fashion 
to XJk,  w).  In  Sec. 3 we discuss an exact mean field representation 
for xs(k,  z )  of the form 

where xo(k,  z )  is the response function for an ideal gas, and the com- 
plex effective potential q4s(k, z )  describes all the I‘ memory ” effects 
arising from the interaction between the se!ected particle and the 
other particles in the liquid. This potential vanishes when the 
interaction is switched off; then (1.2) gives automatically the correct 
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SELF-MOTION R E S P O N S E  A N D  SCATTERING F U N C T I O N  207 

result for an ideal gas. We discuss the analytic properties of c$s(k, z) 
and show that it can be obtained from its imaginary part, c$,"(k, w ) ,  

which thus forms the basic unknown of this theory and contains all 
the information about the dynamics of the single-particle motion. 
Also given in Sec. 3 are some exact formulae relating the incoherent 
scattering function S,(k, w )  to +,"(k, w ) .  It is shown that there is a 
particularly simple, exact relation between S,(k, w = 0) and #s", 
which is useful in the interpretation of experimental data@) on 
S,(k, w ) .  The last part of Sec. 3 contains some simple but formally 
exact expressions for the self-diffusion constant. 

In Sec. 4 we use two simple ansatz forms for +,"(k, w )  in which 
the basic parametkr, a relaxation time, is determined from the 
experimental data on S,(k, w = 0),  making use of an exact relation 
referred to above. With these forms for c$,"(k, w) we have calculated 
S,(k, w ) ,  finding excellent agreement with the experimentally 
determined S,(k, w )  for liquid argon.@) Finally, the relation of the 
above forms for #,"(k, w )  to previous model calculations of the 
velocity autocorrelation function is discussed. 

2. Analytic Properties and Sum Rules 
Much of this section parallels that given in I for the density- 

density response function. First we recall that the self-motion 
response function Xs(k, z )  is an analytic function of the complex 
variable z off the real axis and is given in terms of the spectral 
function Xs"(k, w )  by(3) 

dw xs"( k ,  w )  
XAk, 4 = - 

w - z  
xs"(k, w )  is related to Van Hove's incoherent scattering function 
B,(k, w )  defined here as 

m 

>, (2 .2 )  dteio(t-t') (e-ik. r , ( t )  & k .  r,W) 
- m  

which in the classical limit reads 
0 
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208 A .  A .  KUGLER 

Even though we shall restrict ourselves to the classical limit, it  is 
for our purposes usually more convenient to deal with the function 
x8”(k, w ) .  The latter is a real, odd function of w with the property 

Very useful, exact relations are provided by the moment sum rules 
wX;’(k) w )  2 0: 

for x,”(k, w )  or S,(k, w ) .  We define the moments 

These can in principle be evaluated for all n by making repeated use 
of the equation of motion. For the two lowest order sum rules one 
has 

M(?,(k) = Xs(k, 0) = pj?, 
(2.6) 

Ml“)(k) = g = ppk%p,  

independent of the interaction, where z)T = (ka T/m)”z is the mean 
thermal velocity. For n 1 it will be useful to introduce the 
quantities ( w p ( k ) )  by setting 

M!i2+,(k) = pgk%-Ywp“()>. (2.7) 

The formulae for (ws2(k) )  and <ws4(k)) are known explicitly in terms 
of the interparticle potential v(r)  and static correlation functions(8,S) : 

( w S 2 ( k ) )  = 3 k ’ U ~ ~  4- Do2 3k%p2 + drg(r)V%(r), (2.8) ‘ s  
( ~ , 4 ( k ) )  = 1 5 ( k ~ ~ ) ~  + 6 k % ~ ~ D o ~  + 9 drg(r)[C* VU(~)]~ 
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SELF-MOTION RESPONSE A N D  SCATTERING FUNCTION 209 

where g(r) is the pair distribution function, rI2 = rl - r2, rI3 = rl - rJ, 
and g3(rlr r2, r3) = g3(0 ,  r12, r13) is the three particle distribution 
function. Qo2 can be interpreted as a mean square Einstein oscil- 
lation frequency of a particle along its trajectory in the fluid. 

We shall also make use of the asymptotic expansions for xl(k,  z )  
and x;*(k, z )  for large z. From (2.1) and (2.5) one finds for large z 

(2.11) 

In  the case of free particles, the self-motion response function xll(k, z )  
is identical with the free particle density-density response function 
xo(k, z )  discussed in detail in I. The large z expansions of xo(k, z )  
and x t 1 ( k ,  z )  are obtained from (2.10) and (2.11) by replacing the 
moments Mk)(k)  by the corresponding noninteracting values Mio)(k) 
(given by Eqs. (2.6)-(2.9) with v(r) = 0). 

A quantity which is widely studied in the theory of liquids and 
which is closely related to the incoherent scattering function is the 
velocity autocorrelation function @(t)  and its associated frequency 
distribution function S,(w) defined by 

(2.12) do - S,(w)e-ht, @(t) = (v(t) - v(0)) = Lw 2 m  

where v(t) is the velocity of the particle s at time t .  From Eq. (2.2) 
follows the exact relaAion, valid for a spatially invariant 

(2.13) k2 
lim w2SiS,(k, w )  = - S,(w). 
k+O 3 

From (2.12) we immediately obtain the zeroth moment of X,(w) : 

(2.14) 

The higher frequency moments of S,(W) are conveniently described 
by the quantities (up) defined by 

(2.15) 
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210 A .  4. RUQLER 

Using the relation (2.13) we see that the (wEn) are related to the 
moments of the incoherent scattering function by 

(2.16) 

Comparing the moment expressions (2.7)-(2.9) with (2.16) we obtain 
the expressions(5) 

(w,2) = lim (w,2(k))  = Qo2, 
k - 4  

( w U 4 )  = lim ( ~ , 4 ( k ) )  = 2p drg(r)[V(c- Vv(r))12 k 4  m '{ J (2.17) 

where k is a unit vector. 

diffusion constant D, :(11) 
To conclude this section let us recall the relation defining the self- 

(2.18a) 

= lim &X,(w). (2.18b) 

For an ideal gas D, is infinite, while for a harmonically oscillating 
atom it is zero. For an atom in a liquid D, is a finite positive quan- 
tity. Using the relations (2.4) and (2.13) we can also express D, in 
the f o r m ~ ( ~ J ~ )  

-0 

(2.18~) 

(Note that strictly speaking the relations (2.1%) and (2.18~) would 
predict D, = 0 for an ideal gas, since in this case S,(w) = 3 v ~ ~ S ( w ) ,  
and lim 6(w) = 0, whereas 6(0) = 00. In  order to adhere to the 

customary definitions of transport  coefficient^(^) as expressed here by 
(2.18b) and (2.18c), we shall adhere to the convention that in going 
to the ideal gas limit, the interaction between particles is to be 
switched off after the required limits in (2.18b, c) have been taken.) 
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3. An Exact Representation for xs(k ,  z) and xs"(k, w)  

In  analogy to the discussion given in I for the density-density 
response function, 
x,(& z )  of the form 

we propose here an exact representation for 

or, equivalently 

In  I we showed that the above representation amounts to an exact 
generalization of the mean field approximation, in which the static, 
effective mean field potential is replaced by one which is also frequency 
(z) dependent. Accordingly we refer to this representation as the 
generalized mean field representation, to be distinguished from 
the generalized hydrodynamic representation considered by some 
authors(4J2). 

The representation (3.1) has the feature that it automatically 
gives the correct free particle result, x,,(k, z) ,  for xs(k,  z) when the 
interaction is switched off. The function $Jt, z) may be considered 
an effective frequency and wave number dependent interaction 
acting on the particle 8. For the moment we may simply regard (3.2) 
as the definition of +s(k, z). As shown in I, it is possible to give an 
equivalent space-time form for the representation (3.1) in terms 
of an exact ansatz for the equation of motion of the phase-space 
distribution function describing the particle s. Here we shall use 
analyticity and sum rule arguments to describe the basic properties 
which ~&(lc, z) must satisfy. Below we shall show explicitly the 
relation between the incoherent scattering function S,(k, 0)  measured 
in neutron inelastic experiments and the real and imaginary parts of 

First we observe that because xs(k, 0) and xo(E, 0) are both equal 
to p/3 it folIows from (3.2) that ~ $ ~ ( k ,  0) = 0. Second, from the 
fact that x;l(k, z )  and xo*(k, z) are analytic functions of z off the real 
axis,(4) it follows that the same must be true of $s(k, z). Equations 
(3.2) and (2.11) imply that for large z, +Jk, z )  has the asymptotic 
expansion 

$8. 
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where 

A .  A .  KUQLER 

(3.5) 

Because ~ $ ~ ( k ,  z )  -+8m(k) is analytic off the real axis and vanishes 
for large z as l/z2 we may write a spectral representation of the form 

nz a,(k) = -- [ ( ~ , 4 ( k ) )  - ( ~ , “ ( k ) ) ~  - 6(kv~)7- 
Pk2 

where +,”(k, w )  is a real, odd function of w given by 

+,“(k, w )  = 1?7+(k, 0 +iE). (3.7) 
By taking z = 0 in (3.6) we obtain the sum rule 

(3-8) 
dw+,”(k, w )  = mQo* s -  - m  .TI w pk2 * 

By comparing (3.3) with the large z expansion of (3.6) we obtain the 
first moment sum rule for +,“(k, w )  : 

Higher order moment sum rules for +,”(k, w )  could be obtained in 
terms of the moments of x,”(k, w ) .  The real part of the effective 
interaction, to be denoted by +i(k, w )  is related to the imaginary 
part, +,“(k, w ) ,  by a Kramers-Kronig relation : 

where P denotes the principal value integral. 
From (3.1) the spectral function xs”(k, w )  is found to be given by 

and the real part, x;(k, w )  of the complex response function 
xs(k, w +ie) is 
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SELF-YOTION RESPONSE A N D  SCATTERING FUNCTION 213 

In  (3.11) and (3.12) all the arguments of the functions on the right are 
k, w .  The functions x,,“(k, w )  and x,,’(k, w )  are the corresponding 
free particle functions discussed in I. Here we quote only the ex- 
pression for xo)‘ : 

(3.13) 

The incoherent scattering function S,(k, w )  is determined by Eqs. 
(2.4) and (3.11). Since $i(k, w )  is given in terms of $,”(k, w )  by 
(3.10)) the calculation of S,(k, w )  is reduced to the problem of 
determining #,“(k, w ) .  As long as any approximate #,”(k, w )  satis- 
fies the sum rule (3.8), S,(k, w )  will automatically satisfy the zeroth, 
second and fourth moment sum rules. If in addition, $,”(k, o) is 
chosen to satisfy (3.9)) S,(k, w )  will also satisfy the sixth moment 
sum rule, and so on. 

It will be useful to note here explicitly the exact expression for 
S,(k, w = 0), the incoherent scattering function at  zero energy 
transfer. Frofn Eqs. (2.4)) (3.11) and (3.13) one finds 

(3.14) 

Note that both sides of this equation have the dimension of time. 
Since p&,”(k, w )  is a dimensionless measure of the effect of inter- 
actions, we can rigorously define a quantity 7(k) having the dimen- 
sion of time by setting 

so that (3.14) can be written as 

(3.15) 

(3.16) 

The relations (3.14) and (3.16) are simple but rigorous consequences 
of the present formalism and prove very useful in relating or com- 
paring experimental results to theory ; they will be applied in the 
next section. The time ~ ( k )  is a characteristic “memory ” or 
relaxation time associated with the motion of the selected particle 6. 
It may be interpreted as the average length of time the particle s 
“ remembers ” the density fluctuation of wave number k it has under- 
gone at previous times on account of its collisions with the other 
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214 A. A .  K U G L E R  

particles. Even though we are unable to  prove it in general, we 
expect T(k) as defined by (3.15) and (3.16) to be positive. In  the next 

-section, on the basis of the results obtained by Skold et aZ.,@) this is in 
fact found to be the case. 

Being an exact representation for the spectral function, Eq. (3.11) 
must provide (at least in principle) a correct description of phenomena 
in the entire region of frequencies and wave numbers. In  particular, 
for small values of its arguments, the function $,"(k, w )  must contain 
the essential information characterizing the diffusion process which 
the particle s is undergoing on a long distance-time scale. To see 
these relations let us first note the expression for the spectrum of the 
velocity autocorrelation function in terms of +,'(k, w )  and +:'(k, w )  

From Eqs. (2.4), (2.13) and (3.11) one obtains 

(3.17) 

In obtaining this result we have made use of the asymptotic expansion 
for X i ( k ,  w )  given by Eq. (3.18) in I. Note from relations (3.3)- 
(3.10) that the limits as k --* 0 of k2+,'(k, w )  and k2+,"(k, w )  are finite 
quantities and that +,'(k, 0) = 0 .  It therefore follows that the self- 
diffusion constant D, (cf. Eqs. (2.18 a-c)) is given by 

Whereas in the defining relations (2.18~) the order in which the limits 
are taken is important, we might expect that this is not the case for 
(3.18), i.e. we might expect that kz+,"(k, w)/w is well behaved and 
slowly varying at small k ,  w. We can then interchange the limits in 
(3.18) and using Eqs. (3.15), (3.4) obtain the expression 

(3.19) 

A relation of this form was first derived by Martin and Yip(l3) 
starting from quite different considerations than the ones presented 
here. Insofar as the precise meaning of the time ~ ( 0 )  is defined by 
Eq. (3.15), the above relation may simply be looked upon as a useful 
shorter version of the rigorous expression (3.18). (Noting the analogy 
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SELF-MOTION RESPONSE AND SCATTERING FUNCTION 215 

between 0,- and the homogeneous electrical conductivity u, Martin 
and Yip(13) have observed that in the problem of electrical conduc- 
tivity, (3.19) corresponds to the well-known expression 

u=-=- f e V 0 )  w v W 4  
m 4mn ' 

since wv2, the square of the plasma frequency, corresponds closely 

It is perhaps also of some interest to note here explicitly the 
relation between +,"(k, w )  and the frequency dependent friction 
" constant ') y ' (o )  introduced originally by Martin and Yip.(13) The 
latter is the basic quantity in the generalized hydrodynamic de- 
scription and has been considered more recently by Zwanzig and 
Bixon(14) on the basis of a generalized Navier-Stokes approach. The 
link between the formalism presented in this paper and that of the 
above authors is contained in the relations 

to 52,Z.) 

(3.20) 

Thus the generalized frequency-dependent friction constant analysis 
of single-particle motion presented by the above authors(13J4) can be 
considered and obtained as a limiting case ( k + 0 )  of the present ' 

generalized mean field formalism. 
To conclude this section we remark that similar arguments to 

those given in Sec. 3 of I can be made concerning a possible experi- 
mental determination of the function 4,"(k, w )  from the measured 
incoherent scattering function in a certain region of k and w values. 

4. Ansatz forms for 4;' and the calculation of S,(k, w )  

The determination of q$"(k, w )  would be the task of detailed 
microscopic calculations. Thus far, however, the complexity of the 
problem has not allowed any simple, reliable results to be obtained. 
Much can therefore be learned by making assumptions about the 
behaviour of $,"(k, w )  and testing these assumptions by comparing 
the results obtained with experimental data. In  this section we 
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216 A .  A .  K U G L E R  

therefore consider two simple forms for the function +,"(k, w) and 
evaluate the corresponding incoherent scattering function S,(k, w ) .  

The forms we consider are a Lorentzian type form 

with corresponding real part given by 

and a Gaussian type form 

(4.3) 

with corresponding real part 

where u = W T , ( ~ ) /  & and F(u) is Dawson's integral, already en- 
countered in I. Both the above forms (4.1) and (4.3) satisfy the basic 
sum rule (3.8) and both are in accord with the relation (3.15) defining 
the relaxation time ~(k). The reason we have chosen to  put on 
subscripts on ~ ( k )  in (4.1) and (4.3) will become clear in what follows. 

First it must, however, be pointed out that the form (4.1) does not 
have a finite first frequency moment as required by the sum rule (3.9). 
Moreover, the complex potential corresponding to (4. l), 

4s'(k, w) = dsm(k)2uF(u), (4.4) 

(where the upper (lower) sign corresponds to z in the upper (lower) 
half complex plane, respectively) is not consistent with the form of 
the asymptotic expansion (3.3). Nevertheless, (4.1) and (4.2) turn 
out to  give a very good description of the observed incoherent 
scattering function. 

The expression for X,(k, w )  is obtained by substituting (4.1), 
(4.2) or (4.3), (4.4) into Eqs. (2.4) and (3.11). The resulting expres- 
sions satisfy the zeroth, second and fourth moment sum rules for 
S,(k, w ) ,  regardless of how the relaxation times ~ ~ ( k )  and ~ , ( k )  are 
determined. 

In  the case of the Lorentzian form (4.1), we cannot employ any 
sum rule arguments to determine ~ , ( k )  in terms of microscopic 
quantities so that recourse will be made to experimental data (see 
below). On the other hand, for the Gaussian form (4.3) we can 
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determine T,(&) by requiring that the first moment sum rule (3.9) for 
+,"(k, w )  be also satisfied. When this is done we obtain ~ , ( k )  as 

With this choice for 7 , (k )  the corresponding S,(k, w )  satisfies all 
moment sum rules up to and including the sixth. 

Unfortunately, the quantity < ~ , 4 ( k ) )  defined by Eq. (2.9) has not 
been calculated ; only the limiting value as k + 0 has been estimated 
(see below). In  the absence of knowledge of (wS4(k) )  we therefore 
proceed to evaluate both ~ , ( k )  and ~ , ( k )  from experimental data. 
The most convenient way of doing t&is is to make use of the exact 
relation (3.14) which, using the forms (4.1) and (4.3) yields ~,(k) = 
~ ~ ( k )  3 ~ ( k )  with ~ ( k )  related to S,(k, 0) by (3.16) : 

We use the experimental values of S,(k, 0) obtained by Skold et aE.@) 
from neutron scattering on liquid argon 36 and a mixture of argon 36 
and argon 40 at a temperature of 85.2 "K. For QO8 we have used tile 
value 52,' = 45 x l O S 4  sec-2 calculated by Nijboer and R a h m a ~ ~ ' ~ )  
for liquid argon a t  T = 85.5 OK and mass density pm = 1.407 gcmd3. 
(A table of values of Qo2 as a function of p and T has been given by 
Levesque and Verlet@).) 

TABLE 1 Values for the quantities 7(k)  and <w,'(k)> as determined from 
Eqs. (4.7) and (4.6), respectively, using experimental data for S,(k,  w = 0) 
obtained by Skold et aE.(2) 

~ ~ ~~~~~~ ~ 

k(L-') 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 

1.66 1.50 1.30 1.21 1.19 1.18 1.13 1.05 0.91 d k )  
(10-13 Sec) 

<w8'(k)) 50.7 60.0 72.2 81.8 88.2 94.2 105 122 152 ( loKO sec-') 

k(K-l) 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 

0.75 0.65 0.62 0.59 0.55 0.51 0.44 0.38 0.35 T(k) 
(10-18 Sec)  

203 255 289 321 372 433 551 707 829 <o,"(k)> 
( 1 0 - 6 0  RBC') 
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Figure 1. Wave number dependence of the " memory ", or relaxation time 
T(k)  for single particle motion, as obtained from Eq. (4.7). "he dashed lines 
represent, respectively, a linear extrapolation to k =0, and a smooth join up 
to the value ~ ( 0 )  =2 .04x  10-l8 sec obtained from the experimental diffusion 
constant via Eq. (3.19). 
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The resulting values for T ( k )  are given in Table 1 and plotted in 
Fig. 1. We see that there is hardly any structure, except perhaps 
near k = 2.0 A-l, and T(k) is a continuously decreasing function in 
the region 1 < k < 4.4A-l. These findings are in agreement with 
some results of Desai's calculations.(7) 

Going back to Eq. (4.6) we can now use the experimentally 
determined T,(k) together with the knowledge of (w,z(k)) to obtain 
the hitherto unknown quantity (w,4(k)). These values are also given 
in Table 1. 

In  connection with the experimental results of Skold et uZ.,@) i t  
should be pointed out that these authors have compared their data 
for S,(k,  0) with the result expected from the diffusion law(11) 
(S,(k, 0) = 2/D,k2), finding an agreement to within 10 % over the 
region 1.0 < k (4.4A-l with a value D, = 1.94 x cm2/sec 
obtained from Naghizadeh and Rice.(15) This wide range of applic- 
ability of the hydrodynamic diffusion law is perhaps surprising and 
indicates that the free particle limit (S,(k,  0) = &/kvp) is reached 
only for k values significantly larger than 4.4A-1. From their 
results Skold et al. conclude that the motion of the atoms in liquid 
argon are dominated by the diffusive motion and that the vibrational 
motions are heavily damped. 

With the values T,(k) = T,(k)  = T ( k )  given in Table 1, one can now 
easily calculate the incoherent scattering function S,(k, w )  for all w by 
substituting the Lorentzian forms (4.1), (4.2) or Gaussian forms (4.3), 
(4.4) into the basic formulae (3.11) and (2.4). The results are shown 
by the solid (for the Lorentzian) and dashed lines (for the Gaussian) 
in Figs. 2 and 3 for several values of k. In  spite of our fitting to the 
experimental values at w = 0, the general agreement between the 
calculated curves and the experimental points can be considered 
excellent. Note that Fig. 2 is a plot on alogarithmic scale and that as 
a result discrepancies for large w where the scattered intensity is small 
are magnified. 

The ansatz functions (4.1)-(4.4) also determine the form of the 
spectrum for the velocity autocorrelation function. Substituting 
(4.1) and (4.2) into (3.17) we find for the Lorentzian ansatz 
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Figure 2. Plot on a logarithmic scale of the incoherent scattering function 
S,(k,  w ) / 2 r  as a function of w for k = 1.0 and 2.0 A-l. The solid and dashed 
lines represent the results of the theory outlined in Sec. 4. 
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Figure 3. Plot of the incoherent scattering function S J k ,  o)/%n for k=3.0 
and 4.0 A-l. The croaes denote theexperimental results of Skold et al. (Ref. 2). 
For these k values the results of the Gaussian approximation (Eqs. (4.3), (4.4)) 
is indistinguishable from those of the Lorentzian approximation (Eqs. (4.1), 
(4.2))- 
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while (4.3), (4.4) give for the Gaussian ansatz 

Su(w) = 
6 u ~ ~ Q ~ % , ( o )  exp [ - U " . ~ ~ ( O ) / T ]  

[W - (2Q02/ &)T~(O)F(WT~(O)/  &)I2 i- Q~~T,~(o)exp[ - 202T22(0)/T] ' 
(4.9) 

The self-diffusion constant D, corresponding to the above expressions 
is given by the formula (3.19) with T ~ ( O ) ,  ~ ~ ( 0 )  in place of ~(0). The 
above expressions (4.8) and (4.9) have been considered by Martin 
and Yip(l3) and can be found plotted in Fig. 1 of their paper. In  
order to be able to calculate S,(w), or to obtain the value of D, from 
the formula (3.19), one needs to know the value ~ ~ ( 0 )  or ~ ~ ( 0 ) .  

Unfortunately, the " experimental " values of T ( k )  given in Table 1 
extend down only to k = 1.08-1 so that it is not possible to give a 
reliable value for ~ ( 0 ) .  A linear extrapolation to k = 0 of the values 
plotted in Fig. 1 would yield the value ~ ( 0 )  = 2.6 x IO-l3sec. If 
we used the " theoretical " value of ~ , ( k )  as determined by (4.6) we 
obtain 

(4.10) 

(where we have used the relations (2.17)), which when substituted 
into (3.19) and (4.9) provides a way of calculating(13) D, and S,(w) in 
terms of the equilibrium quantities (mu4)  and Qo2. Using the value 
(wu4)  N 66.5 x IO5O s e r 4  estimated by Nijboer and Rahman,(5) one 
finds ~ ~ ( 0 )  N 1.24 x sec and D, = 3.16 x cms/sec, in poor 
agreement with the experimental value quoted above. 

If we " invert " the problem and use the experimental value(2) 
D, = 1.94 x loM5 cm2/sec to compute ~ ( 0 )  from (3.19), we find ~ ( 0 )  
= 2.04 x 10-13 sec, which ties in well with the values plotted in Fig. 1. 
Note that a value T 2 ( 0 )  = 2.04 x sec, together with the relation 
(4.10) would then imply (wu4)  = 37.3 x ~ O ~ O S ~ C - ~ ,  instead of the 
above quoted value found by Nijboer and Rahrnan.@) 
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